

OVERVIEW

The Ex1200-3164 high-density multiplexer module is designed to provide a flexible switching multiplexing architecture with 16 individual 1×4-wire multiplexers. Up to 961×4 two-wire channels can be
accommodated in a single EX1200 full rack mainframe for maximum density or mixed and matched with other EX1200 plug-ins for flexibility. Applications include cable harness testing, semiconductor and PCB testing, and those in which multiple points need to be switched to a common resource. All relays also have individual control, and each path allows for hot switching of up to 300 V and $2 \mathrm{~A}(60 \mathrm{~W}$ DC max).

Each bank can be interconnected within a module under program control (via bussing relays) to form larger 2 -wire muxes, up to a maximum of 1×64. The EX1200 analog bus can be used to configure larger multiplexers across modules as required to eliminate external wiring and helps reduce unterminated stubs effects. The analog bus can also be routed directly to the optional EX1 200 series 6.5 digit DMM for direct measurements across the backplane further reduce external wiring. Stub-breaking relays remove the module from the analog bus to minimize a module's effect on measurements being made through other modules. An optional terminal block provides screw termination points for external field wiring. This terminal block also includes cold junction compensation reference for more precise temperature measurements.
block diagram

Relays to the EX1200 DMM Backplane

General Specifications

channel count

MAXIMUM SWITCHING VOLTAGE
MAXIMUM SWITCHING CURRENT
MAXIMUM SWITCHING POWER'
rated switch operations
Mechanica
Electrical
SWITCHING TIME
PATH RESISTANCE
PATH RESISTANCE
INSULATION RESIITANCE
SULATION RESIITANCE
MAXIMUM THERMAL OFFSET PER CHANNEL (HH-LO)
PACITANCE
Open chan
Open channel
Channel-mainfram
High-low
High-ow
BANDWIDTH (-3 d
CROSSTALK (TYPICAL)
1 MHz
10 MHz
ISOLATION (TYPICAL)
TMHz
10 MHz
CONNECTOR TYPE

Configured as either 16 (1x4), 8 (1×8), $4(1 \times 16), 2$ (1×32) or $1(1 \times 64) 2$-wire multiplexers $300 \mathrm{VDC}, 300 \mathrm{VAC}$ rms
2 A
$60 \mathrm{w} \mathrm{DC}, 125 \mathrm{VA}$
1×10^{8} (no load)
1×10^{6} @ $50 \mathrm{VDC}, 0.1 \mathrm{~A}$ (resistive) or $10 \mathrm{VDC}, 10 \mathrm{~mA}$ (resistive)
$10 \mathrm{mV} \mathrm{DC}, 10 \mu \mathrm{~A}$ (resistive)
3 ms
1×10^{9}
$<3 \mu \mathrm{~V}$
$<50 \mathrm{pF}$
$<20 \mathrm{pF}$
$>45 \mathrm{MHz}$
<-70 dB
<-50 dB
<-65 dB
$<-55 \mathrm{~dB}$
160 -pin
Notes:

1. Maximum switched power is derated non-linearly as voltage is increased.
2. This value is in reference to a resistive load. Minimum capacity changes depending on switching trequency and environmental conditions.

Ordering information

EX1200-3164	16 (1x4) 2-wire $300 \mathrm{~V} / 2 \mathrm{~A}$ multiplexer
ACCESSORIES AND TOOLS	
70-0363-504	Strain relief bracket (includes connector, recommended access
70-0363-503	Strain relief bracket kit (without connector)
52-0109-000	Crimp pin (includes 100 crimp pins)
27-0088-160	Mating connector (one per board)
46-0010-000	Crimp tool (DIN)
46-0011-000	Extraction tool (DIN)
70-0363-505	160 -pin, unterminated cable assembly, 3 ft
70-0367-008	EX1200-TB160-2 terminal block, differential module

16 (1×4) 2-wire $300 \mathrm{~V} / 2 \mathrm{~A}$ multiplexer
trin
Strain relief bracket kit (without connector
,
Crimp tool (DIN)
160-pin, unterminated cable assembly, 3
EX1200-TB160-2 terminal block, differential module

